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Abstract 

A solution is given to that problem of extrinsic faulting in 
face-centred cubic crystals in which additional layers may be 
inserted after layers of the original crystal or, generally with 
a different probability, after previously inserted layers. Two 
previous results are deduced as special cases. 

In a previous paper (Howard, 1977) the following model for 
a face-centred cubic crystal containing extrinsic faults was 
considered. Given first the original crystal with original 
layers in the usual stacking sequence for a face-centred 
cubic crystal, we allow the consecutive addition of any 
number of inserted layers after any original layer. We 
suppose that an original layer is followed by an inserted layer 
with probability p while an inserted layer is followed by 
another inserted layer with probability q. With q = 0 this 
model leads to the diffraction problem solved by Johnson 
(1963), while with q = p the model gives the problem 
attempted by Sabine (1966) and solved by Howard (1977) 
[hereafter referred to as (I)]. The present model was intro- 
duced in (I) in the discussion where it was concluded that a 
solution via a difference equation was clearly possible but the 
difference equation might have an order as high as eight. 
Furthermore, it seemed that the more general theories of 
diffraction by faulted crystals might not be applicable to a 
problem of this kind. Under these circumstances, in (I), no 
solution for the present model was attempted. 

It was recognized by one of us (NK) that the above 
problem was not beyond the scope of general theory, and 
indeed we demonstrate in this note how the theory of 
Kakinoki & Komura (1965) is applied in this case. The 

Table  1. The  comple te  P table 

A o A t  A 2 Bo BI B2 Co CI C2 
A o 1 --p p 
A 1 q 1 - q  
A 2 1 - -q  q 
B o p 1 --p 
BI 1 - -q  q 
B 2 q 1 -- q 
C O 1 - p p 
C l q 1 - q 
C 2 1 - q q 

intensity distribution derived here reduces, as required, to the 
results given previously by Johnson (1963) and in (I) for the 
cases q = 0 and q = p respectively. 

We suppose, as usual, that the stacking sequence in the 
original face-centred-cubic crystal is A B C A B C . . . ,  but we 
shall identify these original layers as A 0, B 0, C 0. We have 
to distinguish two types of inserted layer: A~ denotes an 
inserted layer which, if the original sequence is resumed, is 
followed by C 0, while A 2 denotes an inserted layer which 
would be followed on resumption of the original sequence by 
B 0. We use BI, B2, CI, C 2, in an analogous manner. With this 
notation, some examples of possible sequences are: 

A o Bo  CoA o"" (the original crystal), 

A oBoA 1CoA o"" (a single inserted layer), 

AoBoA ~B2CoAo... (two successive inserted layers), 

A oBo A a B2A ~ CoA 0"" (three successive inserted layers). 

The model under consideration may be described by listing 
the probabilities in a P table of the type given by Kakinoki 
(1967). In Table 1 we list the distinct followed layers down 
the side, and the distinct following layers across the top. In 
the body of the table we enter the relevant probabilities. The 
P table has the same dimensions as Table 14 of Kakinoki 
(1967). 

The diffraction may now be calculated with the methods 
given by Kakinoki (1967). We give a brief outline, following 
precisely the notation, the steps and the formulae of that 
paper. 

Step I : 

P1 = 0 0 and P2 = 1 - q 0 

- q  0 0 q 

Step 2: 
1 - -  q2 

W 0 -~- 1 _ q 2 +  p +  pq 

P 
W I ~--- 

1 _ q 2 +  p +  pq 

Pq 
W 2 ~- 1 - -  q2 + p + pq 

; fAo = fBo = fco = Wo/3, 

; fA, = A ,  = fc,  = w J 3 ,  

, fA2 = fB~ = fc~ = w J 3 .  
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Step 3: 

rm- 
l - - q 2 +  p +  Pq  

×spur -q~ p pql l ( l -q)~*  o 
__ qZ p p q /  \ (  X -- q)e qe* 

therefore 
TI = [ ( p q  --  2p) + (1 -- 3p  - -  q2 + 3 p q ) e ] / ( 1  - -  q 2  

+ p + pq) ,  

T 2 =  [(--1 + 4 p - -  3p 2 -  2 p q  + q2 + 3 p 2 q ) _  (1 - 3p  

_ q2 + 3 p q ) e ] / ( 1  - q2 + p + pq) .  

Step 4: 

I x - - ( 1 - - p ) e  - - p c *  

F ( x )  = [ --(1 - q)e* x 
I 
[ --(1 -- q)e --qe* 

a 1 = - - ( I -  p)t:, 

a2 = _q2 _ p(1 -- q)e,  

a 3 = - - q ( p  -- q)e. 

o I 7 
= O, 

Step 5 with formula (3): 

C O = 2 - 2p  + 2p  2 - 2 p 2 q  - -  p q 2  + q 4  

+ pq3 + pEq2 + q E ( p _  q)2, 

C 1 = 1 - p q  - p2 + 2 p 2 q  _ pq2 + q4 

_ pEq2 + (1 - p + q2 q 2 p _  qap + q4)e ' 

C 2  = p _ 2q2 _ qp2  + qEp + ( p  _ pq ) s ,  

C 3 = q ( p  - q)(1 + t~), 

E o = 3p[1 -- p2 _ p q  + 5 p 2 q  _ 2 p q 2  

_ p3q  _ 3p2q2 + 3pq3  _ q4 

+ p3q2 _ pEq3 + (--1 + 2p  + q -- p2 + q2 

--  4 p q  + 4 p2 q -- q3 + 3 pq3 _ 4p2q2 

+ p2q3 _ pq4)e] / (1  _ q2 + p + pq) ,  

E l = 3 p [ q ( p - q ) ( - 1 - p + q +  p q ) + ( 1 - - p - q + 2 p q  

_ p 2 q  + p2q2 _ pq3)e] / (1  _ q2 + p + pq) ,  

E 2 ----- 3pq(1 -- q ) ( p  --  q)/(1 - q2 + p + pq) ,  

D o = 3p(2 - 2 p  - q + 2 p q  + 2 p 2 q  

_ 2pq2  _ 2p2q2 + pq3 + pq4 _ qS)/(1 _ q2 

+ p + pq) ,  

D~ = 3 p [ q ( p - - q ) ( - - 1  --  p + q + p q )  + (1 -- p - - q  
+ p q  + q2 _ q3)e]/(1 _ q2 + p + pq) ,  

D z = E 2, 

and the intensity is given by 

D(tp) = {D O + [D~ exp (iq0 + D2exp(2itp) 

+ complex conjugate] } 

× {C O + [Clexp(itP) + C 2 e x p ( 2 i q O  + C3exp(3iq0 

+ complex conjugate] }-1 

Rather  than give a detailed discussion of  the form of the 
above distribution, we verify that it reduces to known 
solutions in special cases. For  q = 0 we obtain 

C o = 2(1 - p + p2),  

C, = (1 - p)(1 + p + e ) =  (1 - p ) ( p -  e*), 

C 2 = p ( l + e ) = - p e * ,  C 3 = 0 ,  

D o = 6 p ( 1 -  p)/(1 + p), 

D ~ = 3 p ( 1 - - p ) e / ( 1  + p),  D z = O ,  

and it can be seen by comparison with equation (50) of  
Kakinoki  (1967) that we have obtained the Johnson (1963) 
result. For q = p we obtain 

C O = 2 - 2p  + 2p  2 -  3p  3 + 3p  4, 

C ~ = ( 1 - p ) [ I +  p - p 2 + ( 1  +p2)e ] ,  

C2=_ p _ 2 p 2 +  ( p _ p 2 ) ~ ,  C 3 = 0 ,  

D o = 3 p ( 1 - p ) ( 2 - p + p z +  p 3 ) / ( l +  p), 

D ~ = 3 p ( 1 - - p ) ( 1 - - p +  p 2 ) e / ( l + p ) ,  D 2 = 0 .  

So for q = p: 

3p(1 -- p) 
D+(~0)- 1 + p 

x [ 2 -  p + p2 + p3 + 2(1 - p + pZ)cos(cP+_ 2zc/3)1 

× [ 2 - - 2 p + 2 p  2 - 3 p  3 + 3 p  4 + 2 ( 1 - p ) ( 1  + p - - p 2 )  cosq~ 

+ 2p(1 - 2p) cos 2tp + 2(1 -- p)(1 ÷ p2) cos (tp +__ 2zt]3) 

+ 2p(1 - -p)  cos (2tp _ 2~z/3)] -1 

where (Kakinoki,  1967) the upper and lower signs corres- 
pond to the cases h - k = 3n + 1 and h -  k =  3 n - -  1 
respectively. With ~0 = zd, it can be shown that this 
expression is identical to expression (14) for intensity 
appearing in (I). 

In an independent study Takahashi  (1978) has also 
recognized that the results in (I) could be derived from the 
general theory. His results are evidently equivalent to ours, 
and he shows graphically examples of intensity profiles for 
q = O, for q = p, and for q = (1 + p ) / 2 .  
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